II B.Tech - I Semester - Regular/Supplementary Examinations November - 2019

 MATHEMATICAL METHODS

 MATHEMATICAL METHODS

 (CIVIL ENGINEERING)

 (CIVIL ENGINEERING)}

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks
$11 \mathrm{x} 2=22 \mathrm{M}$
1.
a) Find the interval in which a root of $3 x=\cos x+1$ lies.
b) Evaluate $\Delta^{2}\left(a^{x}\right)$ by taking interval of differencing $\mathrm{h}=1$.
c) State Newton's forward interpolation formula.
d) Determine $y(0.2)$ using Euler's method, given that $y^{\prime}=x+y, y(0)=0$.
e) State Milne's predictor and corrector formula.
f) If A and B are mutually exclusive events, $p(A)=0.32$ and $p(B)=0.21$ then find $p(A U B)$.
g) Given the probability density $f(x)=\left\{\begin{array}{cc}2 e^{-2 x}, & x>0 \\ 0, & x \leq 0\end{array}\right.$. Then determine $\mathrm{p}(1<\mathrm{x}<3)$.
h) Estimate the finite population correction factor for $\mathrm{n}=10$ and $\mathrm{N}=1000$.
i) A random sample of size 6 has a standard deviation of 0.14 . What can you say about the maximum error with 98% confidence?
j) Explain Type-I and Type-II errors.
k) What is the test statistic formula for small samples concerning $\mu_{1}-\mu_{2}=\delta$.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Find a real root of the equation $x^{4}-x-10=0$ using NewtonRaphson method.
b) Apply Lagrange's interpolation formula to find the value of $f(3)$ if $f(0)=2, f(1)=3, f(2)=12, f(5)=147 . \quad 8 \mathrm{M}$
3. a) Using Taylor's series method, find y at 0.1 and 0.2 , given that $y^{\prime}=x y+1, y(0)=1$.

8 M
b) Apply R-K $4^{\text {th }}$ order method to find approximate values of $\mathrm{y}(0.2)$ and $\mathrm{y}(0.4)$, given that $y^{\prime}=x^{2}+y, y(0)=1$. 8 M
4. a) The probability that a bomb dropped from a plane will strike the target is 0.2 . If 6 such bombs are dropped, find the probabilities that (i) exactly two will strike the target (ii) at least two will strike the target.
b) A random variable having normal distribution with mean 16.2 and variance 1.5625 . Then determine the probabilities that it will take on a value (i) between 13.6 and 18.8 (ii) greater than 16.8 .
5. a) If two random samples of size $n_{1}=7$ and $n_{2}=13$ are taken from a normal population. What is the probability that the variance of the first sample will be at least 3 times as large as that of the second sample?.
b) The mean weight loss of $\mathrm{n}=16$ grinding balls after a certain length of time in mill slurry is 3.42 grams with a standard deviation of 0.68 grams. Construct a 99% confidence interval for the true mean weight loss of such grinding balls under the stated conditions.
6. a) To test the claim that the resistance of electric wire can be reduced by more than 0.05 ohm by alloying, 32 values obtained for standard wire yielded $\overline{x_{1}}=0.136 \mathrm{ohm}$ and $\mathrm{s}_{1}=0.004 \mathrm{ohm}$ and 32 values obtained for alloyed wire yielded $\overline{x_{2}}=0.083 \mathrm{ohm}$ and $\mathrm{s}_{2}=0.005 \mathrm{ohm}$. At the 0.05 level of significance, does this support the claim?
b) Transceivers provide wireless communication among electronic components of consumer products. Responding to a need for a fast, low-cost test of Bluetooth-capable transceivers, engineers developed a product test at a wafer level. In one set of trails with 60 devices selected from different wafer lots, 48 devices passed. Test the null hypothesis $p=0.70$ against $p>0.70$ at the 0.05 level of significance.

8 M

